ICA with Sparse Connections

نویسندگان

  • Kun Zhang
  • Lai-Wan Chan
چکیده

When applying independent component analysis (ICA), sometimes we expect that the connections between the observed mixtures and the recovered independent components (or the original sources) to be sparse, to make the interpretation easier or to reduce the model complexity. In this paper we propose natural gradient algorithms for ICA with a sparse separation matrix, as well as ICA with a sparse mixing matrix. The sparsity of the matrix is achieved by applying certain penalty functions to its entries. The properties of the penalty functions are investigated. Experimental results on both artificial data and causality discovery in financial stocks show the usefulness of the proposed methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Connections Between ICA and Sparse Coding Revisited

Recently, the application of Independent Component Analysis (ICA) to natural images has raised a great interest. Some outstanding features have been observed, like the sparse distribution of the independent components and the special appearance of the ICA bases (most of them look like edges). This paper provides a new insight on this behaviour, being supported by experimental results. In partic...

متن کامل

ICA with Reconstruction Cost for Efficient Overcomplete Feature Learning

Independent Components Analysis (ICA) and its variants have been successfully used for unsupervised feature learning. However, standard ICA requires an orthonoramlity constraint to be enforced, which makes it difficult to learn overcomplete features. In addition, ICA is sensitive to whitening. These properties make it challenging to scale ICA to high dimensional data. In this paper, we propose ...

متن کامل

Speech enhancement based on hidden Markov model using sparse code shrinkage

This paper presents a new hidden Markov model-based (HMM-based) speech enhancement framework based on the independent component analysis (ICA). We propose analytical procedures for training clean speech and noise models by the Baum re-estimation algorithm and present a Maximum a posterior (MAP) estimator based on Laplace-Gaussian (for clean speech and noise respectively) combination in the HMM ...

متن کامل

ICA with Sparse Connections: Revisited

When applying independent component analysis (ICA), sometimes we expect the connections between the observed mixtures and the recovered independent components (or the original sources) to be sparse, to make the interpretation easier or to reduce the random effect in the results. In this paper we propose two methods to tackle this problem. One is based on adaptive Lasso, which exploits the L1 pe...

متن کامل

Local Linear Independent Component Analysis Based on Clustering

In standard Independent Component Analysis (ICA), a linear data model is used for a global description of the data. Even though linear ICA yields meaningful results in many cases, it can provide a crude approximation only for general nonlinear data distributions. In this paper a new structure is proposed, where local ICA models are used in connection with a suitable grouping algorithm clusterin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006